

Camadas dos átomos e a tabela periódica

quarta-feira, 22 de setembro de 2021

Qual átomo essa imagem representa?

Distribuição eletrônica do hidrogênio ao argônio

Cada uma das **camadas eletrônicas** pode comportar um diferente número máximo de elétrons. Por exemplo, a primeira das camadas comporta no máximo 2 elétrons, a segunda, no máximo 8, e a terceira, no máximo 18.

Existe uma tendência de os elétrons ocuparem camadas de energia mais baixa. Quando os elétrons estão na situação de menor energia possível, dizemos que o átomo está em seu **estado fundamental**.

Usando técnicas experimentais adequadas, os cientistas determinaram a **distribuição eletrônica em camadas** para os átomos dos elementos químicos, ou seja, quantos elétrons há em cada um dos níveis da eletrosfera dos átomos (eletricamente neutros e no estado fundamental). A tabela a seguir mostra a distribuição eletrônica dos átomos de hidrogênio (Z = 1) até argônio (Z = 18).

Distribuições eletrônicas:

₁H: K-1

₂He: K-2

₃Li: K-2 L-1

₄Be K−2 L−2

₁₁Na: K–2 L–8 M–1

₁₂Mg: K-2 L-8 M-2

K=2/L=8/M=18/N=32/O=32/P=8/Q=2

Símbolo do elétrons elemento na camada: Fr R R R R R R R R R									18
1º período	H	2	Número atô	mico 13	14	15	16	17	He 2
2º período	Li	Be ²		B 3	C 4	N 5	O 6	F 2	Ne ²
3º período	3 Na ²	4 Mg ² / ₈		5 Al ⁸ 3	6 Si 4	7 P $\frac{2}{5}$	8 S 8 6	9 Cl ² / ₇	10 Ar **
_	11 K **	12 Ca :		13 Ga 18	14 Ge 18	15 As 18 8	16 Se 18	17 Br 18 7	18 Kr 18 8
4º período	19	20		31	32	33	34	35	36
5º período	Rb 18 8 37	Sr 18 2 38		In 18 18 49	Sn 18 18 50	Sb 18 18 5	Te 18 18 52	53 7	Xe 18 18 54
6º período	Cs 18 18 18 55 1	Ba 18 18 56 8		Tl 8 18 32 81 18 3	Pb 18 32 82 82 4	Bi 18 32 18 83 5	Po 18 32 18 84 6	At 18 18 18 18 18 7	Rn 18 32 18 86 8
7º período	Fr 18 87 8 1	Ra 18 18 18 8 8 2	,						

Pelos dados do esquema do item 6, também é possível perceber que os átomos de elementos de um mesmo grupo (família) apresentam em comum o número de elétrons na última camada.

Os átomos de elementos do grupo 1 apresentam 1 elétron na última camada. A diferença entre a eletrosfera de seus átomos está no número de camadas. O átomo de H (primeiro período) tem uma camada, o de Li (segundo período) duas camadas, o de Na (terceiro período) três camadas etc.

Os átomos de elementos do grupo 2 têm 2 elétrons na última camada, os do grupo 13 têm 3 elétrons na última camada, os do grupo 14 têm 4 elétrons e assim por diante.

Exceção a isso é o elemento hélio (Z = 2). Seus átomos apresentam 2 elétrons na camada de valência, mas ele não é colocado no grupo 2. Suas propriedades não se assemelham às dos elementos daquele grupo, mas sim às dos gases nobres (Ne, Ar, Kr, Xe, Rn). Por isso, o **hélio** é considerado **gás nobre** e é incluído no **grupo 18** da tabela periódica.

1	_						18
•H	2	13	14	15	16	17	He:
•Li	•Be•	• B•	·.	• N •	• • • •	F •	Ne:
•Na	•Mg•	• Al •	•Si•	• P •	• S •	: Cl•	: Ar :
• K	•Ca•	•Ga•	•Ge•	•As•	• Se•	: Br•	Kr:
•Rb	•Sr•	•In•	•Sn•	•Sb•	• Te•	: I •	Xe:
•Cs	•Ba•	•Tl•	•Pb•	• Bi •	• Po•	: At•	:Rn:
•Fr	• Ra•						

O que não posso esquecer em relação a aula de hoje?

- 1° o número de camadas de um átomo corresponde ao período em que ele se localiza na tabela periódica.
- 2° a unidade correspondente ao grupo no qual um átomo faz parte, sinaliza a quantidade de elétrons na última camada. Ou seja, Todos os elementos que estão localizados no grupo 1 apresentam 1 elétron na última camada.