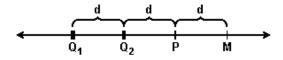

1. Aproximando-se uma barra eletrizada de duas esferas condutoras, inicialmente descarregadas e encostadas uma na outra, observa-se a distribuição de cargas esquematizada na figura 1, a seguir:

Figura 1

Em seguida, sem tirar do lugar a barra eletrizada, afasta-se um pouco uma esfera da outra. Finalmente, sem mexer mais nas esferas, move-se a barra, levando-a para muito longe das esferas. Nessa situação final, a alternativa que melhor representa a distribuição de cargas nas duas esferas é:

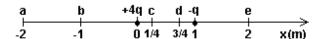

2. As cargas Q_1 = 9 μ C e Q_3 = 25 μ C estão fixas nos pontos A e B. Sabe-se que a carga Q₂ = 2 μ C está em equilíbrio sob a ação de forças elétricas somente na posição indicada. Nestas condições:

3. No vácuo ($k_0 = 9.10^9 \text{ Nm}^2/\text{C}^2$), são colocadas duas cargas elétricas puntiformes de 2.10^{-6}C e 5.10⁻⁶C, distante 50cm uma da outra. A força de repulsão entre essas duas cargas tem intensidade:

- a) 63.10^{-3} N
- b) 126.10^{-3} N c) 45.10^{-2} N d) 36.10^{-2} N
- e) 18.10⁻² N

4. Duas cargas pontuais Q_1 e Q_2 , respectivamente iguais a +2,0 μ C e - 4,0 μ C, estão fixas na reta representada na figura, separadas por uma distância d.

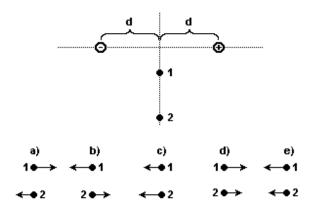
Qual é o módulo de uma terceira carga pontual Q₃, a ser fixada no ponto P de modo que o campo elétrico resultante da interação das 3 cargas no ponto M seja nulo?


a) 2 μ C

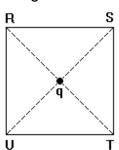
b) 3 μ C

c) (7/9) μ C

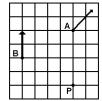
d) $(7/4) \mu C$ e) $(14/7) \mu C$


5. Duas cargas elétricas puntiformes, de valores +4q e -q, são fixadas sobre o eixo dos x, nas posições indicadas na figura a seguir:

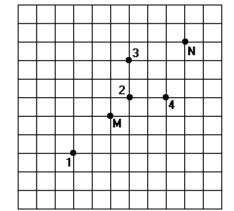
Sobre esse eixo, a posição na qual o campo elétrico é nulo é indicada pela letra


- a) a.
- b) b.
- c) c.
- d) d.
- e) e.

6. Duas cargas, de sinais opostos e de mesmo módulo, estão dispostas próximas uma da outra, conforme representado na figura a seguir. O par de vetores que representa o campo elétrico resultante nos pontos 1 e 2 é:


7. Cargas elétricas puntiformes devem ser colocadas nos vértices, R, S, T e U do quadrado a seguir. Uma carga elétrica puntiforme q está no centro do quadrado. Esta carga ficará em equilíbrio quando nos vértices forem colocadas as cargas:

	R	S	Т	U
a)	+Q	+Q	-Q	-Q
b)	-Q	-Q	+Q	+Q
c)	+Q	-Q	+Q	-Q
d)	+Q	-Q	-Q	+Q
e)	-Q	+Q	+Q	-Q


8. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo do campo elétrico no ponto P da figura vale, em volt por metro:

- a) 3.
- b) 4.
- c) $3\sqrt{2}$.
- d) 6.
- e) 12.

9. Duas cargas elétricas +Q e -9Q estão localizadas, respectivamente, nos pontos M e N indicados no esquema a seguir. Considerando os pontos 1, 2, 3 e 4 marcados no esquema, o campo elétrico resultante da ação dessas cargas elétricas é nulo:

- a) somente no ponto 1
- b) somente no ponto 2
- c) somente nos pontos 1 e 2
- d) somente nos pontos 3 e 4
- e) nos pontos 1, 2, 3 e 4

10. Qual é a carga elétrica de um corpo que possui 2.980 prótons e 3.010 elétrons? (carga de próton=+1). (Dado: |e| = 1,6. 10-19 C, no qual "e" significa carga elementar.)

- 11. Duas partículas com carga $5 \times 10^{-6} \, \text{C}$ cada uma estão separadas por uma distância de 1 m. Dado $K = 9 \times 10^9 \, \text{Nm}^2/\text{C}^2$, determine
- a) a intensidade da força elétrica entre as partículas;
- b) o campo elétrico no ponto médio entre as partículas.

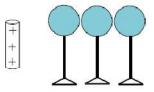
12. Duas esferas metálicas contendo as cargas Q e 2Q estão separadas pela distância de 1,0 m. Podemos dizer que, a meia distância entre as esferas, o campo elétrico gerado por:

- a) ambas as esferas é igual.
- b) uma esfera é 1/2 do campo gerado pela outra esfera.
- c) uma esfera é 1/3 do campo gerado pela outra esfera.
- d) uma esfera é 1/4 do campo gerado pela outra esfera.
- e) ambas as esferas é igual a zero.

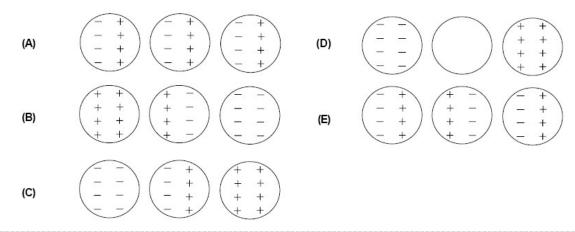
13. Tem-se 3 esferas condutoras idênticas A, B e C. As esferas A (positiva) e B (negativa) estão eletrizadas com cargas de mesmo módulo Q, e a esfera C está inicialmente neutra. São realizadas as seguintes operações:

- 1) Toca-se C em B, com A mantida à distância, e em seguida separa-se C de B;
- 2) Toca-se C em A, com B mantida à distância, e em seguida separa-se C de A;
- 3) Toca-se A em B, com C mantida à distância, e em seguida separa-se A de B Podemos afirmar que a carga final da esfera A vale:

a) zero


b) + Q/2


c) - Q/4


d) + Q/6

e) - Q/8

14. Três esferas metálicas, apoiadas em suportes isolantes, são colocadas próximas, como no desenho abaixo, porém sem se tocarem. Um bastão carregado é aproximado da primeira esfera.

15. De uma estação A, um trem de metrô parte do repouso com aceleração constante de 1,0 m/s² até atingir 10 m/s; segue com esta velocidade por 1,0 minuto e, finalmente, freia com desaceleração constante de 2,0 m/s², até sua chegada à estação B, onde para. A distância entre as duas estações, em m, é de:

(A) 600 (B) 625 (C) 650 (D) 675 (E) 700

Bons estudos!!!

"O insucesso é apenas uma oportunidade para recomeçar com mais inteligência." (Henry Ford)